Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Nazan Ocak Ískeleli, ${ }^{\text {a }}{ }^{*}$ Ufuk Coruh, ${ }^{\text {b }}$ Olcay Bekircan, ${ }^{\text {c }}$ Ayșen Ağar, ${ }^{\text {d }}$ Selami Sașmaz ${ }^{e}$ and Ahmet Erdönmez ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, ${ }^{\mathbf{b}}$ Department of Computer Education and Instructional Science, Faculty of Education, Ondokuz Mayıs University, Samsun, Turkey, ${ }^{\text {c }}$ Department of Chemistry, Giresun Art and Science Faculty, Karadeniz Teknik University, Giresun, Turkey, ${ }^{\text {d }}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Department of Chemistry, 55139 Samsun, Turkey, and ${ }^{\mathbf{e}}$ Department of Chemistry, Rize Art and Science Faculty, Karadeniz Teknik University, Rize, Turkey

Correspondence e-mail: nocak@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.049$
$w R$ factor $=0.151$
Data-to-parameter ratio $=21.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3,5-Diphenyl-4-(3,4,5-trimethoxybenzylamino)-4H-1,2,4-triazole

The title compound, $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}$, contains three aromatic rings and a triazole ring which are not coplanar. In the crystal structure the molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$, $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}, \mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions.

Comment

Recently, the synthesis and biological activities of some 4-arylidenamino-4,5-dihydro-1 H-1,2,4-triazol-5-ones have been reported (Kröger et al., 1965; Kahveci \& İkizler, 2000). Due to their structural similarity, 4-arylidenamino-4H-1,2,4-triazoles may be important as potential biologically compounds (Grammaticakis \& Champetier, 1970). For this reason, the synthesis of the title compound, (IV), was carried out and its crystal structure is reported here.

Received 14 April 2005 Accepted 5 May 2005 Online 14 May 2005

(I)

(IV)
(II)

(III)

In the title compound (Fig. 1), all the six-membered aromatic rings and the triazole ring are planar. The dihedral angles between these aromatic rings [C11-C16 (ring A), $\mathrm{C} 21-$ C26 (ring B) and C31-C36 (ring C)] are 23.67 (5) (between rings $A / B), 36.95(5)(A / C)$ and $17.93(5)^{\circ}(B / C)$. The dihedral angles they form with the triazole ring are 40.13 (5), 29.45 (6) and $43.76(4)^{\circ}$, respectively. The molecular conformation as well as bond lengths and angles are similar to those observed in the related derivative 3-phenyl-5-p-tolyl-4-(3,4,5-tri-methoxybenzylamino)-4H-1,2,4-triazole (Isik et al., 2003).

Figure 1
An ORTEPIII drawing (Burnett \& Johnson, 1996) of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The significant deviation from the ideal value observed for the bond angles $\mathrm{O} 1-\mathrm{C} 33-\mathrm{C} 32$ [123.57 (14) ${ }^{\circ}$], $\mathrm{O} 1-\mathrm{C} 33-$ C34 [116.53 (12) $)^{\circ}$], O3-C35-C36 [124.21 (14) ${ }^{\circ}$] and O3-C35-C36 [115.95 (13) ${ }^{\circ}$] could be ascribed to the electronic repulsions occurring between atoms $\mathrm{H} 33 A / \mathrm{H} 32$ and $\mathrm{H} 35 \mathrm{~B} /$ H36. The crystal packing is determined by the combination of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{N}, \mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ weak intra- and intermolecular hydrogen bonds, and $\mathrm{C}-\mathrm{H} \cdots \pi$ (Table 2) and $\pi-\pi$ interactions. Weak intra- and intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are present involving atoms C32 and C331 as donors and the triazole ring and benzene ring C . In addition to these interactions, the crystal structure is stabilized by intermolecular $\pi-\pi$ stacking interactions occurring between the triazole ring and rings A and B of centrosymmetrically related molecules $\left[C g 1 \cdots C g 1^{\mathrm{v}}=3.356(1) \AA\right.$ and $C g 2 \cdots C g 3^{\mathrm{v}}=$ 3.991 (1) \AA; symmetry code: (v) $2-x,-y,-z ; C g 1, C g 2$ and $C g 3$ are the centroids of the triazole ring and phenyl rings A and B, respectively].

Experimental

3,5-Diphenyl-4-(3,4,5-trimethoxybenzylidenamino)-4H-1,2,4-triazole, (III) (0.005 mol), was dissolved in dried methanol (50 ml) and $\mathrm{NaBH}_{4}(0.005 \mathrm{~mol})$ was added in small portions. The mixture was refluxed for 20 min and then allowed to cool. After evaporation at 298-303 K under reduced pressure, the solid residue was washed with cold water. After drying in vacuo, the solid product was recrystallized from ethyl acetate to afford the desired compound (IV) (m.p. 428429 K; yield 97.12%). IR: 3272 (NH), 1596 (CN), 698, 766, 819 (substituted benzenoid ring), ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 3.60(s, 6 \mathrm{H}$, $\left.2 \mathrm{OCH}_{3}\right), 3.78\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.65\left(d, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.65(t, 1 \mathrm{H}, \mathrm{NH}), 5.95$ $(s, 2 \mathrm{H}$, aromatic H) $7.50(m, 6 \mathrm{H}$, aromatic H$), 7.87(m, 4 \mathrm{H}$, aromatic H). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 55.79\left(2 \mathrm{C}, 2 \mathrm{OCH}_{3}\right), 60.68\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right)$, $56.36\left(2 \mathrm{C}, \mathrm{CH}_{2}\right)$; Aryl C atoms: 152.99 (2C), 137.65, 130.06 (2C), $129.54,128.79$ (4C), 128.05 (4C), 126.84 (2C), 105.77 (2C), Triazole C3 and C-5: 153.98 (2 C). UV: $\lambda_{\max } 259$ (e 21.7), $\lambda_{\max } 213$ (e 28.3). Analysis calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}$: C 69.21, H 5.81, N 13.45%; found: C 69.55, H 5.72, N 13.11%.

Crystal data
$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}$
$M_{r}=416.47$
Monoclinic, $P 2_{1} / n$
$a=14.4453$ (12) \AA
$b=6.3267$ (5) A
$c=24.4965(19) \AA$
$\beta=104.517$ (6) ${ }^{\circ}$
$V=2167.3$ (3) \AA^{3}
$Z=4$
$D_{x}=1.276 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 15455
reflections
$\theta=1.5-29.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.58 \times 0.49 \times 0.34 \mathrm{~mm}$

Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: by
integration (X-RED32;
Stoe \& Cie, 2002)
$T_{\text {min }}=0.931, T_{\text {max }}=0.973$
19928 measured reflections

> 5940 independent reflections 3823 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.070$
> $\theta_{\max }=29.4^{\circ}$
> $h=-19 \rightarrow 19$
> $k=-8 \rightarrow 8$
> $l=-33 \rightarrow 33$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.151$
$S=1.01$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0855 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.59 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.48 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.034 (3)

Table 1
Selected geometric parameters ($\AA{ }^{\circ},{ }^{\circ}$).

C341-O2	$1.416(3)$	$\mathrm{N} 4-\mathrm{N} 3$	$1.3823(17)$
C331-O1	$1.413(2)$	$\mathrm{C} 3-\mathrm{N} 1$	$1.4673(16)$
O1-C33	$1.3610(17)$	$\mathrm{C} 1-\mathrm{N} 2$	$1.3711(16)$
O2-C34	$1.3852(17)$	$\mathrm{N} 3-\mathrm{C} 2$	$1.3161(16)$
C35-O3	$1.3666(19)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.3677(15)$
O3-C351	$1.417(2)$	$\mathrm{N} 2-\mathrm{N} 1$	$1.4062(13)$
N4-C1	$1.3138(16)$		
C33-O1-C331	$117.68(12)$	$\mathrm{O} 3-\mathrm{C} 35-\mathrm{C} 36$	$124.21(14)$
C34-O2-C341	$114.09(13)$	$\mathrm{O} 3-\mathrm{C} 35-\mathrm{C} 34$	$115.95(13)$
O1-C33-C34	$116.53(12)$	$\mathrm{C} 35-\mathrm{O} 3-\mathrm{C} 351$	$117.15(14)$
O1-C33-C32	$123.57(14)$		

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C26-H26 $\cdots \mathrm{N} 1$	0.93	2.57	$3.0572(19)$	113
C341-H34C $\cdots \mathrm{O} 3$	0.96	2.56	$3.085(3)$	115
N1-H1A $\cdots \mathrm{N}^{\mathrm{i}}$	0.86	2.51	$3.0226(14)$	119
${\text { C331-H33A } \cdots \mathrm{O}^{\mathrm{ii}}}^{\mathrm{C}}$	0.96	2.42	$3.197(2)$	138
C32-H32 $\cdots \mathrm{Cg} 1^{\text {C331-H33C } \cdots \mathrm{Cg} 4^{\mathrm{iii}}}$	0.93	3.25	$3.4488(15)$	94

Symmetry codes: (i) $x, 1+y, z$; (ii) $1-x,-1-y,-z$; (iii) $1-x,-y,-z . C g 1$ and $C g 4$ are the centroids of the triazole and C31-C36 benzene rings, respectively

The H atoms were positioned geometrically and refined using a riding model, fixing the aromatic $\mathrm{C}-\mathrm{H}$ distances at $0.93 \AA$, the methylene $\mathrm{C}-\mathrm{H}$ distances at $0.97 \AA$, the methyl group $\mathrm{C}-\mathrm{H}$ distances at $0.96 \AA$ and the $\mathrm{N}-\mathrm{H}$ distance at $0.86 \AA$, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent atom) or $1.5 U_{\text {eq }}$ (methyl group).

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular

organic papers

graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Grammaticakis, M. P. \& Champetier, M. G. (1970). C. R. Acad. Sci. Paris, 271, 940.

Isik, S., Olcay, B. C., Ağar, A. \& Şaşmaz, S. (2003). Acta Cryst. E59, o1535o1537.
Kahveci, B. \& İkizler, A. A. (2000). Acta Pol Pharm. Drug Res. 57, 119-122.
Kröger, C. F., Hummel, L., Mutscher, M. \& Beyer, H. (1965). Chem. Ber. 98, 3025.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - A REA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany

